High-order finite element–integral equation coupling on embedded meshes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order finite difference schemes on non-uniform meshes for the time-fractional Black-Scholes equation

We construct a three-point compact finite difference scheme on a non-uniform mesh for the time-fractional Black-Scholes equation. We show that for special graded meshes used in finance, the Tavella-Randall and the quadratic meshes the numerical solution has a fourth-order accuracy in space. Numerical experiments are discussed. Introduction The Black-Scholes-Merton model for option prices is an ...

متن کامل

High Order Fluctuation Schemes on Triangular Meshes

We develop a new class of schemes for the numerical solution of first-order steady conservation laws. The schemes are of the residual distribution, or fluctuation-splitting type. These schemes have mostly been developed in the context of triangular or tetrahedral elements whose degrees of freedom are their nodal values. We work here with more general elements that allow high-order accuracy. We ...

متن کامل

High Order Edge Elements on Simplicial Meshes

Low order edge elements are widely used for electromagnetic field problems. Higher order edge approximations are receiving increasing interest but their definition become rather complex. In this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than one. We give a geometrical localization of all degrees of freedom over particular edges and provide a basi...

متن کامل

On Compact High Order Finite Difference Schemes for Linear Schrödinger Problem on Non-uniform Meshes

In the present paper a general technique is developed for construction of compact high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes. Conservation of the finite difference schemes is investigated. The same technique is applied to construct compact high-order approximations of the Robin and Szeftel type boundary conditions. Results of computational expe...

متن کامل

Arbitrary order BEM-based Finite Element Method on polygonal meshes

Polygonal meshes show up in more and more applications and the BEMbased Finite Element Method turned out to be a forward-looking approach. The method uses implicitly defined trial functions, which are treated locally by means of Boundary Element Methods (BEM). Due to this choice the BEM-based FEM is applicable on a variety of meshes including hanging nodes. The aim of this presentation is to gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2018

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2018.08.032